

Gene therapy: Overview and Update

Bryce Fincher, BS

Outline

Gene therapy

Treatment that uses specific genetic material to treat a condition by:

Providing a functional copy of a gene

Increasing disease-modifying genes

Suppressing activity of a damaged gene

Vectors

Surface proteins on viruses interact with host receptor to enter the cell and release their genome

Common viral vectors used:

- → Herpes simplex virus (HSV)
- → Adenovirus (Ad)
- → Adeno-associated virus (AAV)
- → Lentivirus (LV)

Organic and nonorganic vectors that deliver small/large DNA or RNA

Methods of delivery:

- → Chemical
- → Physical

Administration

Diseases treated with gene therapy

Spinal muscular atrophy Retinal dystrophy Lymphoma & Leukemia Melanoma
Prostate cancer
Hematopoietic conditions

Spinal muscular atrophy Retinal dystrophy Melanoma

Administration

Ex vivo (

Lymphoma & Leukemia
Hematopoietic
conditions
Prostate cancer

American Society of Gene + Cell Therapy

Gene Therapy Centers

This list of gene therapy centers in the U.S. is intended for use by patients, advocates, and caregivers who are seeking gene therapy research for a rare disease. This list excludes oncology (cancer) due to the wide scope of cancers and number of centers working on them. The Blood & Marrow Transplant Information Network has a list of medical centers offering CAR T-cell therapy. If you are unsure whether a clinical trial is open for your disease, search by diagnosis using the <u>ASGCT Clinical Trials Finder</u>. To suggest a center or make an update to a center listed please <u>contact us</u>.

Center	Disease focus area*	Location	Contact
Cell and Gene Therapy Collaborative at CHOP	 Beta thalassemia Choroideremia Hemophilia Leber congenital amaurosis (LCA) Methylmalonic acidemia Mucopolysaccharidosis (MPS I, MPS II) Phenylketonurias (PKU) Sickle cell disease Spinal muscular atrophy (SMA) 	The Children's Hospital of Philadelphia 3501 Civic Center Blvd Philadelphia, PA 19104	Contact Learn more

The Blood & Marrow Transplant Information Network

ARKANSAS

University of Arkansas for Medical Sciences

Little Rock, AR

Phone: 501-296-1200 Click here for website

ARIZONA

Banner Health

Gilbert, AZ

Phone: 480-256-6444 Click here for website

Phoenix Children's Hospital

Phoenix, AZ

Phone: 480-826-4251 Click here for website

Medical Centers Offering CAR T-cell Therapy

Click on the state below to view information about those centers.

Alabama	Maryland	South Carolina
Arkansas	Massachusetts	South Dakota
Arizona	Michigan	Tennessee
California	Minnesota	Texas
Colorado	Mississippi	Utah
Connecticut	Missouri	Virginia
Delaware	Nebraska	Washington
District of Columbia (DC)	New Hampshire	West Virginia
Florida	New Jersey	Wisconsin
Georgia	New York	
Illinois	North Carolina	

https://www.bmtinfonet.org/transplant-article/medical-centers-offering-car-t-cell-therapy

Current Clinical Trials

(Clinicaltrials.gov, 2021)

Sickle Cell Gene Therapy Trial

- Ex vivo administration
- HIV modified virus vector (lentivirus)
- DNA encoding hemoglobin
- Compensate for defective gene

Sickle Cell Gene Therapy Trial

14 people free of pain crises

1 has developed acute myeloid leukemia (AML)

2 have developed myelodysplastic syndrome (MDS)

SICKLE CELL DISEASE (SCD)

^

LentiGlobin

PHASE 1/2 STUDIES

HGB-206

Evaluating safety and efficacy of LentiGlobin gene therapy in patients with SCD ${\bf STATUS}$: ACTIVE, NOT RECRUITING

HGB-205

Evaluating safety and efficacy of LentiGlobin gene therapy in patients with TDT or SCD **STATUS: COMPLETE**

PHASE 3 STUDY

HGB-210

Evaluating safety and efficacy of LentiGlobin gene therapy in patients with SCD

STATUS: RECRUITING

LONG-TERM FOLLOW-UP

LTF-307

Long-term Follow-up of Subjects With Sickle Cell Disease Treated With Ex Vivo Gene Therapy Using Autologous Hematopoietic Stem Cells Transduced With a Lentiviral Vector

STATUS: ENROLLING BY INVITATION

Cost

Retinal dystrophy

\$425,000

Spinal muscular atrophy

\$2.1 million

Considerations

- Access to services
- Patient understanding
- Elimination of disability
- Informed consent
- Social effects and barriers

Common misconceptions

- Genetic so it will be passed to children
- If it is changing the genes then it will change who I am
- It can be used for any condition with a known genetic component

References

- Aiyegbusi, O. L., Macpherson, K., Elston, K., Myles, S., Washington, J., Sungum, N., Briggs, M., Newsome, P.
 N. & Calvert, M. J. (2020). Patient and public perspectives on cell and gene therapies: a systematic review.
 Nature communications, 11, 1-9. https://doi.org/10.1038/s41467-020-20096-1
- American Society of Gene and Cell Therapy (ASGCT). (n.d.). Gene therapy centers. ASGCT. Retrieved on May
 5, 2021 from https://patienteducation.asgct.org/gene-therapy-101/gene-therapy-centers
- America's Biopharmaceutical Companies. (2020). Medicines in development: cell and gene therapy.
 America's Biopharmaceutical Companies. Retrieved on May 5, 2021 from
 https://phrma.org/-/media/Project/PhRMA/PhRMA-Org/PhRMA-Org/PDF/A-C/MID-cell-and-gene-therapy-2 020.pdf
- Belete, T. M. (2021). The current status of gene therapy for the treatment of cancer. *Biologics: Targets and Therapy*, 15, 67-77.
- Blood and Marrow Transfusion Information Network. (n.d.). Medical centers offering CAR T-cell therapy.
 BMTinfonet.org. Retrieved on May 5, 2021 from
 https://www.bmtinfonet.org/transplant-article/medical-centers-offering-car-t-cell-therapy
- Bluebirdbio. (n.d.). Our clinical trials. Bluebirdbio. Retrieved on May 5, 2021 from https://www.bluebirdbio.com/our-science/clinical-trials

References

- Fidler, B., & Pagilarulo, N. (Eds.). (2021, February). Bluebird stops studies of sickle cell gene therapy after new cancer cases. *Biopharmadive*. Retrieved on May 5, 2021 from https://www.biopharmadive.com/news/bluebird-pause-gene-therapy-study-leukemia-myelodysplastic/595112/
- Ma, C., Wang, Z., Xu, T., He, Z., & Wei, Y. (2020). The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnology Advances, 40, 1-14. https://doi.org/10.1016/j.biotechadv.2019.107502
- U.S. Food & Drug Administration. (2019). Approved cellular and gene therapy products. Retrieved from <u>https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products</u>
- Wong, C. H., Li, D., Wang, N., Gruber, J., Conti, R., & Lo, A. W. (2020). Estimating the financial impact of gene therapy. medRxiv preprint. https://doi.org/10.1101/2020.10.27.20220871

Thank You!

DO YOU HAVE ANY QUESTIONS?