

An Intersection between Genetics and COVID-19

Aaron M. Wendelboe, PhD
Associate Professor of Epidemiology
May 7, 2021

Outline

- Biology review
 - Humans and viruses
- SARS-CoV-2 virus, its cousins, and its animal hosts
- Genetic technology and novel vaccine development
- Epigenetics approach to identifying risk factors for severe COVID-19 disease

Human Biology Review

Chromosomes comprise double-stranded DNA

Human Biology Review

- Chromosomes comprise double-stranded DNA
- Transcription is process of transcribing DNA to messenger RNA (mRNA)

Human Biology Review

- Chromosomes comprise double-stranded DNA
- Transcription is process of transcribing DNA to messenger RNA (mRNA)
- Translation is process of translating mRNA to proteins via assembling amino acids

mRNA starts with the 5' end

Virology

Zoonotic viruses

- Influenza
- West Nile virus
- Rabies
- Dengue fever
- Ebolavirus

- HIV
 - Jumped the species barrier at least two independent times

SARS

Animals linked to SARS-CoV-1

- Masked palm civet cats
- Racoon dogs
- Horseshoe bats

https://news.psu.edu/story/626880/2020/07/28/research/researchers-identify-evolutionary-origins-sars-cov-2

Animals linked to SARS-CoV-2

- Pangolin
- Horseshoe bats

• Mink

https://www.thethirdpole.net/en/nature/pakistan-pangolin-scales/

https://www.pbs.org/wgbh/nova/article/mink-covid-virus-mutation/

Virus variants

- All viruses change and mutate.
 - Most mutations are not good for the virus.
 - Only small percent of mutations are beneficial to the virus.
 - Because the virus replicates itself billions/trillions/gazillions of times across the globe, those rare times the mutation is beneficial for the virus is enough for it to turn into a new strain or variant.
- More effective strains replace the old, less effective strains.

Tracking the Variants of COVID-19

Reported in the US

• B.1.429+B.1.427 =
$$37,615$$

•
$$B.1.525 = 642$$

• B.1.617+ =
$$325$$

https://www.gisaid.org/hcov19-variants/

Reported in Oklahoma

•
$$P.1 = 2$$

• B.1.617
$$+ = 2$$

Vaccine Development

Brief timeline of synthetic mRNA development

- 1990: researchers at University Wisconsin inject mice with mRNA to express selected genes
- 1989-2005: Dr. Kariko at University of Pennsylvania studying mRNA delivery systems
 - 1989-1995: Failed to obtain research grants
 - 1996-2005: Modest success
- 2005: Dr. Kariko made breakthrough discovery: modified nucleosides that slipped past immune system
- 2009: Dr. Rossi uses synthetic mRNA to develop stem cells
 - No need to use embryos

Continued timeline of synthetic mRNA development

- 2010: Dr. Rossi co-founds Moderna
- 2013: BioNTech (German company) hires Dr. Kariko as senior VP over mRNA work
 - BioNTech focus on cancer therapy use of mRNA
- Jan 10, 2020: Chinese scientists post SARS-CoV-2 genetic sequence
- Feb 24, 2020: Moderna has first vials of experimental vaccine
 - Computer programming used to develop sequence
- July 28, 2020: Moderna initiated late-stage vaccine trial

Background on mRNA vaccines: Pfizer and Moderna

mRNA vaccines instruct the immune system to recognize a specific part of the virus

SARS-2-CoV

mRNA that encodes the spike protein is synthesized and packaged inside a lipid coating

Cells use the mRNA to make a spike protein that is recognized by the immune system

Epigenetics

Genetics and risk of severe COVID-19 morbidity

- Study of 407 people with confirmed COVID-19
 - Age ≤ 61 years
 - Mild disease: 194 patients; Severe disease 213 patients (hospitalized with respiratory support)
- Study population split into prediction and validation cohorts
 - Stratified by disease severity
- 44 CpG sites significantly associated with COVID-19 disease severity
 - Genes associated with immune system and interferon release
- Using validation cohort, epigenetic signature able to predict severe disease with 88.2% specificity and 77.8% sensitivity
- In general population: 13.3% of people have epigenetic signature
 - Approximate percent of population who get severe COVID-19

Summary

- Genetics and the building blocks of life
 - Viruses mutate and find new hosts for survival
- Synthetic mRNA technology not new, but still in its infancy
- Risk factors for severe COVID-19 disease likely associated with genetic factors

Questions?

